IL PRINCIPIO DI INDETERMINAZIONE
l principio di indeterminazione nasce e si sviluppa all'interno della meccanica quantistica, nella prima metà del secolo scorso.
Il principio di indeterminazione ci dice che non è possibile misurare contemporaneamente e con estrema esattezza le proprietà che definiscono lo stato di una particella elementare.
Se ad esempio potessimo determinare con precisione assoluta la posizione, ci troveremmo ad avere massima incertezza sulla sua velocità.
Questo concetto si può esemplificare pensando a come, in linea di principio, si potrebbe misurare la posizione di una particella così piccola da sfuggire dall'osservazione ad occhio nudo. Utilizzando un microscopio, sempre più potente, si può pensare di individuarne la posizione con sempre maggiore precisione.
Tuttavia, così facendo, noi dobbiamo illuminare la particella con un fascio di luce, ad esempio, e, così facendo, dato che la luce porta energia ed impulso, la nostra particella riceverebbe una piccola spinta che cambierebbe il suo stato di moto. E più si illumina la particella con potenti microscopi, più le si da energia, più si cambia il suo momento, cioè la sua velocità, e meno possiamo determinare la sua velocità di partenza. In altre parole le due misure, della posizione e dell' impulso (massa moltiplicata per la velocità) comportano un'indeterminazione complessiva.
Il principio di indeterminazione da un punto di vista concettuale significa che l'osservatore, cioè lo scienziato che fa la misura, non può mai essere considerato un semplice spettatore, ma che il suo intervento, nel misurare le cose, produce degli effetti non calcolabili, e dunque un'indeterminazione che non si può eliminare.
La pallina da biliardo e l'elettrone
Prendiamo come esempio una pallina da biliardo e illuminiamola per poterla osservare. Il fascio di luce fornisce energia alla pallina, ma questa energia non è sufficiente ad imprimere una forza abbastanza apprezzabile alla pallina.
Considerando ora una situazione analoga con un elettrone, illuminando l’elettrone con un fascio di luce il moto dell’elettrone risulta perturbato dai fotoni, perché la luce porta energia e impulso, e di conseguenza il nostro elettrone riceverebbe una piccola spinta che modificherebbe il suo stato di moto. Perciò più si illumina con potenti microscopi, più gli si fornisce energia che fa cambiare la sua velocità rispetto a quella di partenza e di conseguenza la sua quantità di moto (prodotto della massa per la velocità).
Non è quindi possibile conoscere con precisione dove l’elettrone si trova, senza dargli una quantità di moto non determinabile: perciò è impossibile sapere con precisione e contemporaneamente dove l’elettrone è e che velocità possiede.
In questo modo perde senso anche il concetto di traiettoria, perché si può parlare di traiettoria solo quando si può osservare il movimento di un corpo senza perturbare tale moto.
Tutte queste considerazioni sono solo qualitative; ebbene, il principio di indeterminazione di Heisenberg le rende quantitative. Il principio di indeterminazione fu annunciato nel 1927 da Heisenberg (fisico tedesco che ricevette il premio nobel per la fisica nel 1932) e si sviluppò nella prima metà del secolo scorso all’interno della meccanica quantistica.
Questo principio vale per tutti i corpi, sia macroscopici sia microscopici, però per gli oggetti che ci circondano (macroscopici) ha delle conseguenze pratiche quasi inesistenti, perché la costante di Planck è molto piccola e le indeterminazioni Δx e Δp sono trascurabili rispetto agli errori di misura, comunque sempre presenti.
Questo vuol dire che se su un sistema si esegue una misura di energia, la precisione con la quale è possibile fornire il risultato è determinata dalla durata della misurazione: più la misura è breve e più impreciso sarà il valore trovato dell’energia.
Al contrario, se si vuole conoscere quello che succede in un intervallo di tempo molto piccolo, il comportamento quantistico dei sistemi impone che si debbano utilizzare energie elevate.
La funzione d'onda
In un’onda elettromagnetica vibrano il campo elettrico e il campo magnetico.
Cosa vibra in un’onda di materia?
La fisica quantistica dice che quello che vibra in un’onda di materia è una grandezza che non può avere un’interpretazione classica, ed è chiamata con il termine ampiezza di probabilità o funzione d’onda.
Essa dipende dalle coordinate e dall’istante di tempo.
Introducendo l’ampiezza di probabilità la fisica quantistica spiega il principio di indeterminazione di Heisenberg.
Con le leggi della meccanica si può calcolare esattamente la posizione occupata dal corpo in ogni momento, purchè si conoscano posizione e velocità iniziali del corpo, massa e forze che agiscono su di esso.
In fisica quantistica questo non è possibile, perché possiamo solo calcolare l’ampiezza di probabilità e quindi la probabilità che il corpuscolo si trovi ad un certo istante in una certa posizione.
Pierre Simon Laplace, a questo punto, direbbe così: “La teoria della probabilità non è in fondo che il buon senso ridotto a calcolo: essa fa apprezzare con precisione ciò che gli spiriti giusti sentono per una sorta di istinto, senza che essi possano, sovente, rendersene conto”.
Il principio di indeterminazione ci dice che non è possibile misurare contemporaneamente e con estrema esattezza le proprietà che definiscono lo stato di una particella elementare.
Se ad esempio potessimo determinare con precisione assoluta la posizione, ci troveremmo ad avere massima incertezza sulla sua velocità.
Questo concetto si può esemplificare pensando a come, in linea di principio, si potrebbe misurare la posizione di una particella così piccola da sfuggire dall'osservazione ad occhio nudo. Utilizzando un microscopio, sempre più potente, si può pensare di individuarne la posizione con sempre maggiore precisione.
Tuttavia, così facendo, noi dobbiamo illuminare la particella con un fascio di luce, ad esempio, e, così facendo, dato che la luce porta energia ed impulso, la nostra particella riceverebbe una piccola spinta che cambierebbe il suo stato di moto. E più si illumina la particella con potenti microscopi, più le si da energia, più si cambia il suo momento, cioè la sua velocità, e meno possiamo determinare la sua velocità di partenza. In altre parole le due misure, della posizione e dell' impulso (massa moltiplicata per la velocità) comportano un'indeterminazione complessiva.
Il principio di indeterminazione da un punto di vista concettuale significa che l'osservatore, cioè lo scienziato che fa la misura, non può mai essere considerato un semplice spettatore, ma che il suo intervento, nel misurare le cose, produce degli effetti non calcolabili, e dunque un'indeterminazione che non si può eliminare.
La pallina da biliardo e l'elettrone
Prendiamo come esempio una pallina da biliardo e illuminiamola per poterla osservare. Il fascio di luce fornisce energia alla pallina, ma questa energia non è sufficiente ad imprimere una forza abbastanza apprezzabile alla pallina.
Considerando ora una situazione analoga con un elettrone, illuminando l’elettrone con un fascio di luce il moto dell’elettrone risulta perturbato dai fotoni, perché la luce porta energia e impulso, e di conseguenza il nostro elettrone riceverebbe una piccola spinta che modificherebbe il suo stato di moto. Perciò più si illumina con potenti microscopi, più gli si fornisce energia che fa cambiare la sua velocità rispetto a quella di partenza e di conseguenza la sua quantità di moto (prodotto della massa per la velocità).
Non è quindi possibile conoscere con precisione dove l’elettrone si trova, senza dargli una quantità di moto non determinabile: perciò è impossibile sapere con precisione e contemporaneamente dove l’elettrone è e che velocità possiede.
In questo modo perde senso anche il concetto di traiettoria, perché si può parlare di traiettoria solo quando si può osservare il movimento di un corpo senza perturbare tale moto.
Tutte queste considerazioni sono solo qualitative; ebbene, il principio di indeterminazione di Heisenberg le rende quantitative. Il principio di indeterminazione fu annunciato nel 1927 da Heisenberg (fisico tedesco che ricevette il premio nobel per la fisica nel 1932) e si sviluppò nella prima metà del secolo scorso all’interno della meccanica quantistica.
Questo principio vale per tutti i corpi, sia macroscopici sia microscopici, però per gli oggetti che ci circondano (macroscopici) ha delle conseguenze pratiche quasi inesistenti, perché la costante di Planck è molto piccola e le indeterminazioni Δx e Δp sono trascurabili rispetto agli errori di misura, comunque sempre presenti.
Questo vuol dire che se su un sistema si esegue una misura di energia, la precisione con la quale è possibile fornire il risultato è determinata dalla durata della misurazione: più la misura è breve e più impreciso sarà il valore trovato dell’energia.
Al contrario, se si vuole conoscere quello che succede in un intervallo di tempo molto piccolo, il comportamento quantistico dei sistemi impone che si debbano utilizzare energie elevate.
La funzione d'onda
In un’onda elettromagnetica vibrano il campo elettrico e il campo magnetico.
Cosa vibra in un’onda di materia?
La fisica quantistica dice che quello che vibra in un’onda di materia è una grandezza che non può avere un’interpretazione classica, ed è chiamata con il termine ampiezza di probabilità o funzione d’onda.
Essa dipende dalle coordinate e dall’istante di tempo.
Introducendo l’ampiezza di probabilità la fisica quantistica spiega il principio di indeterminazione di Heisenberg.
Con le leggi della meccanica si può calcolare esattamente la posizione occupata dal corpo in ogni momento, purchè si conoscano posizione e velocità iniziali del corpo, massa e forze che agiscono su di esso.
In fisica quantistica questo non è possibile, perché possiamo solo calcolare l’ampiezza di probabilità e quindi la probabilità che il corpuscolo si trovi ad un certo istante in una certa posizione.
Pierre Simon Laplace, a questo punto, direbbe così: “La teoria della probabilità non è in fondo che il buon senso ridotto a calcolo: essa fa apprezzare con precisione ciò che gli spiriti giusti sentono per una sorta di istinto, senza che essi possano, sovente, rendersene conto”.